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Abstract—A recently developed numerical method for single-component phase-change problems is
extended to treat some existing multi-domain models for diffusion-controlled solidification of binary alloys.
The multi-domain models invoke a special difficulty associated with the unknown interface location and
phase-transition temperature. Such a difficulty is efficiently resolved here by defining corrections similar to
those used in single-phase convection problems. The field equations and the interfacial conditions are
treated fully implicitly through the correction equations that are developed from the conservation of the
interfacial fluxes. In addition, when a high disparity occurs between thermal and solutal mass diffusivities,
renormalization of the length scales is suggested to improve spatial resolution of both the temperature and
concentration fields. As a verification, several diffusion models that allow for analytical solutions are
considered. Numerical solutions agree well with the available analytical solutions. The widely used assump-
tion of a constant latent heat is found to be thermodynamically inconsistent under certain conditions and
is clarified and corrected. A unique iteration procedure suggested in this study proves to be remarkably
efficient and leads to fast convergence.

1. INTRODUCTION

THE PRESENT study is an extension of our pre-
vious works [1, 2] in which the use of conservative
transformed equations was suggested in treating the
single-component phase-change problems. Here,
we consider the numerical solution to a class of
diffusion-controlled solidification of binary alloys.
During solidification of binary systems, the solid—
liquid interface exhibits a variety of microscopically
complicated growth structures. There is also present
a region in which both the solid and liquid phases
coexist, which is often called the mushy zone. A com-
prehensive coverage of the solidification of binary
mixtures is given in ref. [3]. A recent review of the
various treatments in modeling of the mushy zone and
their current status is provided in ref. [4]. Among a
vast number of existing mathematical models for alloy
solidification, we focus on some specific models based
on the assumptions of macroscopically planar inter-
faces, local thermodynamic equilibrium, and the
transport of heat and/or solute mass by diffusion
alone. For convenience, these models are classified
into four groups, which are briefly described below.
Model I assumes the existence of a single interface
that distinctly separates both pure solid and pure
liquid phases. The diffusion equations for the trans-
port of heat and solute mass are written for individual
phases, and their solutions are coupled through the
interfacial conditions. Some analytical solutions exist
in one-dimensional geometry {5-9]. Also, some semi-
analytical and numerical solutions are available in the
literature [10-13]. However, depending on the mag-
nitude of the parameters, solutions to Model T may

exhibit an arbitrary mushy zone in the liquid phase
[14]. In Model II, the mushy zone is taken into con-
sideration by assuming that its growth is controlled
by heat diffusion; thus solidification occurs in an a
priori known range of temperatures between solidus
and liquidus temperatures. The local solid fraction in
the mushy phase is assumed to vary linearly with
either distance or temperature. Also, fixed values of
effective heat capacity and thermal conductivity are
used in the mushy zone, and several closed-form solu-
tions are available [15-17]. Model III is the same as
Model II except that the thermophysical properties of
the mushy phase are weighted with respect to the local
solid fraction, which is determined from the equi-
librium phase diagram. Analytical solutions com-
bined with numerical solutions can be found for semi-
infinite media {18, 19]. Model IV is an extension of
Model III and includes the solute mass diffusion.
Therefore, the temperature and concentration fields
are fully coupled through the interfacial conditions
[20, 21]. This classification of existing models is made
only for ease of presentation of the numerical method ;
for example, the distinction between Models II and
IH is made due to the different treatment of the mushy
zone.

In this study, the numerical solution to Models I-
M1 (excluding Model IV) are formulated by using a
multi-domain approach. A unique feature of the multi-
domain approach is the requirement for the imposition
of the appropriate interfacial conditions. Generally,
the temperature is assumed to be continuous at
the interface, i.e. local thermodynamic equilibrium is
assumed. In addition, two thermodynamic relations
are specified at the interface; one is the equilibrium
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NOMENCLATURE
A, A,, functions in finite-difference o* reference thermal diffusivity of the mushy
equations phase [m?s ']
a, modified influence coefficients Jif dimensionless number
C, solute concentration field I, effective diffusion coefficient
¢ specific heat [J kg™' K] 7, variable in correction equation
¢, ratio of ¢g/c. O solutal boundary-layer thickness [m]
, solute mass diffusivity {m? s~ '] ds solid-phase thickness [m}
d, diffusion conductance 0 thickness of phase i [m]
F, total mass flux € convergence criterion, equation (18)
I solid fraction in the mushy phase n similarity variable
/i solid fraction at solid~mushy interface 0,(6) dimensionless temperature, T,/ T*
G, H functions defined 1n equation (24) (T/T*)
Ah latent heat [J kg™"] A similarity constant or dimensionless
AR*  reference latent heat at T* [J kg '] solid-phase thickness
h, specific enthalpy [J kg™'] Ac dimensionless thickness of solutal
h¥ reference enthalpy [J kg™'] boundary layer
] phase index or boundary index Ay dimensionless thickness of thermal

1

J, total flux of ¢,

[/];  ¢-flux discontinuity at interface i

K partition coefficient, m_/mg

k; thermal conductivity [W m ' K]

* reference length [m]

M, total number of grid points within phase i

; coefficients for liquidus and solidus
curves [K]

N total number of phases, Fig. 1

n geometry index
' Peclet number
pi ¢; coefficients in correction equation (17)

Q heat sink [W m™'}

Ste  Stefan number, AR*/(¢sT*)

T, temperature field [K]

T*  reference temperature [K]

Ty freezing temperature of pure solvent [K]
T, temperature at the interface 7 [K]

1 time {s]

At time increment [s]

u, velocity [ms™']

v, variable, x"* 'j(n+1)
variable defined in equation (15)
spatial coordinate [m]

; position of interface i [m].

=8

e =

Greek symbols
% thermal diffusivity [m®s™ ']

boundary layer
W (i) variable, 6g,2/0T; (0¢/0T))

& transformed coordinate for phase /
0; density kg m ]
s ratio of ps/p,

parameter, equation (30)
dimensionless time
general dependent variable

a

T

¢ e

¢ (G2
v

hs—h
w; dimensionless number for position
correction.
Superscripts
N corrected value
* reference

A interface
’ correction term.

Subscripts
i,i+1 phase or boundary indices
iA (iB) ahead (backward) of interface i
L liquid
S solid.

Other symbols
lel:  @ia— @ for any quantity ¢
lp|  absolute value of ¢.

phase diagram [3], and the other is the enthalpy—
temperature relation which leads to the definition of
the latent heat [22]. The concentration discontinuity at
the interface is dependent on the interface temperature
(from an equilibrium phase diagram), as is the en-
thalpy discontinuity at the interface (from enthalpy—
temperature relations). When the assumed constant
specific heats are different between phases, this
enthalpy discontinuity at the interface (i.e. latent heat)

varies with the interface temperature. However, we
observe that this variable latent heat has been unre-
cognized in a large number of previous works. Under
these circumstances, the use of constant latent heat
leads to a thermodynamic inconsistency and, as a
result, violates the overall conservation of energy.
(Only when the variation in the latent heat is negli-
gible, can the overall energy conservation be satisfied
within an acceptable range.) Therefore, the validity of
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the use of a constant latent heat should be examined
for case application. We will examine the consequence
of the use of the thermodynamically inconsistent
assumption in connection with our formulation of
numerical solutions. It is interesting to note that in
contrast to the existing temperature-based for-
mulations, in which the constant latent heat has been
liberally used, the variable latent heat has been cor-
rectly implemented in enthalpy-based formulations
such as in refs. [23-25].

The major difficulties with multi-domain ap-
proaches are associated with unknown interface
location and/or interface temperature (these can even
be time dependent). Determination of these un-
knowns requires the simultaneous solution of indi-
vidual field equations that match the interfacial con-
ditions ; thus the problem is highly nonlinear. As a
result, the capability of accurately tracking the inter-
face location and/or accurately predicting the inter-
face temperature is crucial in developing a numerical
method. Here, we propose a fully implicit method
that overcomes these difficulties by using a successive
iteration. A novel iteration scheme is developed that
is analogous to the SIMPLE algorithm [26] using the
pressure-correction equation to solve the momentum
equations. For this, we introduce a general tem-
perature- and position-correction equation that
improves the intermediate solutions during iterations.
The correction equations are derived from the con-
tinuity conditions of the interfacial fluxes and are
solved simultaneously to update the interface tem-
perature and position. This unique solution procedure
proves to be efficient and allows for rapid conver-
gence. The present numerical method is applicable to
both unbounded- and finite-domain problems and is
able to account for a general phase diagram. Fur-
thermore, in the case of Model I, the existence of steep
concentration gradients near the interface is found to
be easily handled by renormalizing the length scales
in the liquid phase using the thermal and solutal boun-
dary-layer thicknesses. This allows for a more efficient
computation compared with the bilinear mapping [12]
and the use of a large number of grid points [9]. The
performance of the present numerical method is tested
against a few example problems. Even without any
modification, the present numerical method is appli-
cable to some practical problems, such as the model-
ing of the microsegregation in binary metallic alloys
[27].

2. NUMERICAL FORMULATION

In this section, we describe the numerical method
applicable to Models I and I1. The treatment of Model
IIT requires minor modifications, which will be dis-
cussed later. Figure 1 illustrates a multi-domain sys-
tem for which an index iis assigned to each phase and
X, stands for the right boundary of phase i. The density
of phase i is assumed to be constant, and its specific
enthalpy #; is defined as
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Fic. 1. A multi-domain system composed of N dis-
tinguishable phases. A representative phase is highlighted.

T,
h, = J‘ ¢;dT+h* 1)
-
where A4 is the reference enthalpy at a reference tem-
perature T*. Unless otherwise specified, 4* = 0 will
be used for a pure solid phase and 4* = Ah* for a
pure liquid phase, where Ah* stands for a reference
latent heat at T*. For the sake of brevity, we use a
general dependent variable ¢ to denote either a spec-
ific enthalpy # or a solute concentration C (when ¢
stands for the mixture mass, ¢ = 1 will be used). Then,
the governing equation for ¢, is

0 d 0,

5t (x"pib)) + ox (aniuid)l —x"T; %%) =0 (@
where n is the geometry index, I'; = p,a; for ¢, = h;,
and I'; = p;D, for ¢, = C;. The moving boundaries are
immobilized by introducing a coordinate trans-
formation x = x(&,, r). The above equation is then
transformed into [1}

¢ av; aJ;
T (Pﬂf’f 8_5) + 3= 0 3)
with
V_ — 717xll+ 1
RS
x"T; a¢)i
I=Eo Gy @
F=plx il 4
i = Pi u— 6t ( )

where F; is the total flux of mixture mass and J, is that
of ¢,;. The immobilization of the moving boundaries
creates the pseudo-convection in the transformed
coordinate [28] so that F, can have a non-zero value
even in the absence of the velocity field.

Now, suppose that phase transition is occurring
across an interface i. At this interface, the temperature
is continuous from the assumption of thermodynamic
equilibrium, and the interfacial fluxes are continuous

from the conservation principles, i.e.
Ti=Ti+|s E=E+I’ Ji=Ji+I (5)

where all the quantities are evaluated at the interface
X, In addition, the values of ¢, and ¢, , at the inter-
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face are determined from the given thermodynamic
relations (equilibrium phase diagram for ¢ = C and
enthalpy-temperature relations for ¢ = /#). When the
values of ¥, and 7, are known, numerical solutions of
equation (3) are easily obtained as described in ref.
[1]. Therefore, only the special features arising from
the determination of £, and T, will be presented below.

For convenience, subscripts iA and (B indicate
ahead and backward of the interface i, respectively.
Therefore, whenever ¢ varies discontinuously across
the interface 7, each value of ¢ at the interface will be
designated by ¢,, and ¢, respectively, as shown in
Fig. 2. Next. we use the linear transformation

X=04+% . 6 =X%-% (6)

where 0 < & < 1 and 9, is the thickness of phase /.
For efficient computations in treating Model 1, %, is
allowed to take different values for the enthalpy and
concentration fields. This is because a high disparity
between thermal and solutal diffusivities causes the
corresponding boundary-layer thicknesses in the
liquid phase to be substantially different. For the finite
control-volumes adjacent to the interface /, shown in
Fig. 2, the interfacial ¢-fluxes are expressed as

jiA = ﬁi&f\ +aiA(q§iA — i)
Am = ﬁ/(f;m +ap(dp— (ﬁrs) )]
with

Aia = diAAm(ﬁ‘//’diAL g = diBAm(ﬁi/diB)

y AN Ty

din = 777 m > 4B = TR

A ()i+ I(AS)iA ? 5;(A5)13
 Patda o Dutd

Fin = féA : ‘/’;A_ Fm = d)“ 5?% (8)

where J,, is the total ¢-flux entering phase (i+ 1) and

Jis 1s that leaving phase /. We define the function
An(P) as

A (P) = A(P)+0.5|P| (%)

C.-J. KiMm and M. KAvIANY

Table 1. Function A(P) for different schemes (from ref. [26])

Scheme Formula for A(P)
Central difference 1--0.5{P|

Upwind |

Hybrid max {0, 1-0.5|P|]

Power law

max {0, (1=0.1{P])*}

where A(P) is selected from Table 1 for the desired
scheme. The rationale for introducing this modified
function 4,,(P) will be discussed in the next section.
From equation (5), we have

[-ﬂ]ifjm“jtszo (10)

However, unless £, and T, are correctly specified, the
resulting solution may not satisfy the above equation.
Therefore, newly-guessed values of %, and T, should
be found such that they result in smaller [j](_ These
iterations continue until equation (10) is satisfied
within a prescribed tolerance. One simple way to
improve the tentative values of %, and T is to begin
by assuming that the correct values of £, and T, are
obtained from

TN =T+ T, ¥ =%(0+w) (1

where T will be called the temperature correction and
w; the position correction. The correct value of J,, is
then expressed as

Ih = (FA+ EX@a+in)
+ (@ +a:.A)(¢§:'A — Qi+ QE;A —din)-

The new correction terms appearing in the above
equation are to be determined by retaining only the
first-order correction terms as follows. Expanding
¢ in terms of T7 gives

(12)

d;:’v = (ﬁ + Ed;m ’i“f+...
iA iA (qTI i
and defining p,x = (6. /0T)) yields
bin =T (13)
The correction term ¢, is assumed to depend only
on T and approximated as

bin = (1 =7ia)ttia f;

where 7,4 1s a constant chosen properly. A rigorous
analysis for the determination of y,, is not attempted
here, since, as will be shown, even a constant value of
7:a leads to fast convergence. By combining equations
(4) and (11) and by assuming no contribution from
the velocity term, /7 becomes

(14)

Fr = —jw). (15)

6=t

At
From §,., = X,, , —.X,; and equation (11), we have

. . S , ,
Ol = dip 1w+ Xy (i — ).
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Then, a correct value of d7% is expressed as

&,
dif = din(1+ )" (1 - g’fi>

i+1
or

d
SR = (=Dl + Xix1

16
dia Givh (16)

(wi—wi ).
Next, for simplicity we assume a@j,/a,x = dia/dia by
neglecting any change in the value of A, (F,/d,). At
this point, by using the correction terms derived so
far, J% can be expressed in terms of 77, ) and w/, ,.
If we treat J%, in a way similar to the above and insert
resulting expressions for J% and JJ into equation
(10), we obtain the following first-order correction
equation :

P+ T+ [T = pueis 1 +pawiy  (17)
where
Pi=PintPppt(n— 1)[[}_ ﬁ(ﬂ]i“ [M)—J].
q; = (auy)ia + (auy)is + [ (1 —7/2)pF],
R S T U O

The above correction equation (17) is found to be
readily solvable since the number of correction equa-
tions is always equal to that of the unknowns. Due to
the approximate nature of the correction equations,
the use of an underrelaxation is helpful in obtaining
converged solutions. Note that, if all the values of
[/]; are zero, no corrections are required. Once the
required correction terms are determined, the ten-
tative values of %, and 7T, are updated from equation
(11), but the interfacial ¢-values are determined from
the given thermodynamic relations. Iteration con-
tinues until the convergence criterion

L1,

| L & 18
AR (18)

is satisfied, where ¢ is a prescribed tolerance. In the
following test problems, after some trial runs, the
value of ¢ is selected to be 0.001. An initial guess for
FY (thus £¥) can be obtained explicitly from equation
(7) as

7]
[4];

which is identical to equation (18) in ref. [1]. In Model
I, either ¢ = C or /& can be used to evaluate £V with
the interface temperature fixed (i.e. 7% = T)). Alter-
natively, the values of F; and 7; at the previous time
step can also be used as the initial guesses for £~ and
7 (note that equation (19) reduces to F' = £, when
[/]: = 0).

The overall solution procedure presented above
resembles that used for solving the momentum equa-
tions discussed in ref. [26]; for example, [[f]],- in the

B = -

(19)
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present study plays a role similar to the mass source
in the SIMPLE algorithm.

3. TEST PROBLEMS

3.1. Model I
Consider first the solidification of a dilute binary
alloy in a semi-infinite plane for which phases 1 and 2
are the pure solid and pure liquid phases, respectively.
The thermophysical properties, except the latent heat,
are assumed to be constant within each phase, but
they may differ between phases. The treatment of
the latent heat is based on the enthalpy—-temperature
_relation given in equation (1). By linearizing the equi-
librium phase diagram, the liquidus and solidus lines
are given as

T, = TF-m|C|B = T]-'“mzélA (20)

where T} is the freezing temperature of a pure solvent.
With the interface conditions discussed previously,
the additional conditions are specified as

atr=20: C2=.629 TZZTZ’ 5I=
. aC
atx=0: T,=T,, —'=0
Ox
oT oC
atx=o0: —— =0, 7’£=0 2n
ox 0x

where Ty, T, (= Tr—m,C,) and C, are fixed values.
The analytical solutions subject to the above con-
ditions are reported in the work of Tsubaki and Boley
[7] as an extension of Rubinstein’s solution [6]. How-
ever, a constant latent heat is always used in their
work ; therefore, when ¢, # ¢,, their interfacial energy
balance becomes inconsistent with the enthalpy—tem-
perature relations on which their temperature-field
equations are based. Therefore, modified analytical
solutions, which are thermodynamically consistent,
are given below for the completeness. Using the
enthalpy—temperature relation (1) at the interface and
introducing a similarity variable n = x(4D,1)~ ", the
analytical solutions are

810 =24/ (Dy1), C, =KC\,4

T, —Tq_ eif(lflﬂ_)

A

T, —T, erf(8,4)

Tz"‘fz _ erfc {ﬁz’H‘ﬁzMPr_ l)}

T,—-T, erfc (B,4p,)
C,—C, _ erfe{n+i(p,—1)}
Cia—C, erfc (4p,)

P m,
=0 k=
P P2 m

(22)
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Table 2. The parameters used in the computation and the corresponding analytical solutions from equation
{23). Other parameters are fixed such that C, = 0.1, /Ty = 0.6, my/Te =04, Dyja, = land T* = T}

Case iR [ I B d, g, Ste A A Fy ),
A .00 1/9 1/3 1.000  0.50 1.10 1.500 0.7924 13378 1.3378  0.9480
B 1.00 1.0 005 005 050 [.10 1.500 65949 03368 31.957 0.9403
C 0.024 0082 095 1.07

092 04

0.654  0.5083 1.5134 21.876 0.9515

A similarity constant 4 is obtained from the two tran-
scendental equations

) ¢ Ca .
T e {G(ﬁlz) T H@Ap _62}
(‘1(T0—T*) CZ(TE—T*)
= M A *
G(BA) H(f24p:) ta
Y S < S
Ti=Tr = T*0p) = Te =T~ 5 i

(23)

where
G(x) = Jmxexp (x)erf (x),
H{x) = Jmxexp (x?)erfc (x). (24)

For large values of x, an asymptotic expansion of
H(x) gives [29]

13 (251

Hx) =1+ Y @-l)

J=1

(=2x%)"

In the case of ¢, # ¢,, the above analytical solutions
yield different results from those of Tsubaki and Boley
[7] since a variable instead of constant latent heat has
been incorporated into equation (23). The magnitude
of a few sets of parameters and the corresponding
analytical solutions from this study are listed in Table
2. The dimensionless temperature §, and the dimen-
sionless latent heat Ste are defined in the Nomencla-
ture. Each value of 4, in Table 2 is evaluated from the
analytical solution such that :
at n o= A+iy (25)
Then, if a time-dependent length scale 2./ (D 1) is used
(due to the lack of a physical length scale), i, is
interpreted as a dimensionless thickness of the cor-
responding boundary layer in the liquid phase and 4
as a dimensionless thickness of the solid phase.

Numerical solutions are obtained by employing the
power-law scheme and by using M, =M, =20,
where M, is the total number of grid points within
phase i. The thickness of the solid phase, d,, is the
same for both the temperature and concentration
fields. As was mentioned, thermal and solutal boun-
dary-layer thicknesses in the liquid phase may differ
from each other depending on the value of f;
(approximately of the order of A-/4,) ; therefore, each
value of &, is selected to be sufficiently larger than the
corresponding boundary-layer thickness, while a ratio

of 8,/8, for each ¢-field is made to remain constant
at all times. The initial profiles are obtained from the
analytical solution by assuming that §,//* = 10 %,
and the calculation continues until §,//* = 10°
(special care is required for start-up with arbitrarily
specified profiles). For this problem, the correction
equation (17) provides two linear equations for
two unknowns o, and T (note that o) = 0 and
o’y = w,). Numerical solutions for 4 and @, initially
undergo transient periods up to d,//* ~ 8§ x 10 “ and
thereafter attain asymptotic values that agree to
within 0.4% of the corresponding analytical solutions
listed in Table 2. The converged solution at each time
step is obtained within four iterations after the tran-
sient period. When the local temperature and con-
centration at grid points (in the £, coordinate) are
examined, an asymptotic behavior is observed. This
is because the & coordinate is directly related to the
similarity variable # ; for example

(26)

where 4, is a numerically obtained similarity constant
that is evaluated from 4, = §,(4D,1)” "% and is close
to the exact value of A. Since 4, remains nearly
constant, the transformed coordinate ¢, has a role of
another similarity variable; thus the numerical solu-
tion of 7', (or ;) can be expressed approximately as
T_i - T_Q _ erf(ﬁl’lnél)

- AL bl
f’l - 71” B erf(f12,) 27
Therefore, the transient temperature field in the &,
coordinate remains isothermal at each grid point,
which represents a feature similar to the isotherm
migration methods [30, 31], although the treatment
of the grid location and the corresponding node tem-
perature is reversed. Note that if the above expression
for T, is inserted into the transformed equation (3},
a differential equation dé7/dr = 442D, is obtained as
expected. A similar argument is also valid for the
transformed coordinate &,.

We now discuss the motivation for the choice of the
function A,,(P). First, the interfacial flux of solute
mass into the liquid phase is considered below, but
the following argument is valid for other interfacial
fluxes. From equations (4) and (8), the corresponding
Peclet number is
_IRL_n 89

ds,
a4y b Y a

Pl b.
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where d. stands for a solutal boundary-layer thick-
ness. Since 6./8, ~ Ac/4 and &, = 24,/(D,?), we have

|P| ~ 2p:AAc(Ad) 14 (28)

which indicates that a low Peclet number is associated
with the moving interface (e.g. see Table 2). It is
evident that the function A4,,(P) is the most convenient
form when the interfacial fluxes are central-differ-
enced utilizing a low Peclet number behavior as
explained above. Furthermore, even when the power-
law scheme is preferred to ensure the physical reality
of the solution [26], the use of A, (P) reduces the
nonlinearity in A(P) thus leads to fast convergence.
(This is also valid for other schemes since the interface
Peclet numbers are relatively low.)

We further discuss the possibility of the occurrence
of thermodynamic inconsistency mentioned earlier. In
order to clarify this point, we rewrite equation (5) for
¢ = hin a conventional form as

0Ty 0T, dé
ks —kE = psbhg at ¥ =5()
Ah=h_—hs at T=T 29

where subscripts i and i+ 1 are replaced by subscripts
S and L, &(¢) is the location of the interface, and T
the interface temperature. When the specific heats are
constant, the latent heat Az follows from equation (1)
as

(cL —Cs)(T_ ")
An*

Ah = Ah*(140), o= (30)
where o is introduced here to investigate the effects of
the latent heat variation. Equation (23) shows that
even for a given binary system the interface tem-
perature varies, subject to the changes in the external
parameters such as the wall temperature. Therefore,
in the case of ¢ # ¢, the use of a constant latent heat
as in ref. [7] causes an ambiguity. The variable latent
heat arising from the unequal specific heats between
phases seems to have significant effects especially
when ¢ changes with time (i.e. ¢s # ¢, and time-depen-
dent 7" as encountered in finite-domain problems [8—
12].

As a first approximation, we use the magnitude of
o in equation (30) to estimate the degree of energy-
conservation failure caused by the thermodynamic
inconsistency. This is because if ¢ is negligibly small,
the overall energy balance can be satisfied within an
acceptable range. In order to find out the value of o,
two sample cases are selected ; one is of the results of
Fig. 6 in ref. [11] and the other is of those of Fig. 2 in
ref. [9]. Based on the parameters used in ref. [11]
(selecting T* = 272.65 K and T" = 251.95 K), |6] nax i$
found to be ~0.17. For the second case, |0|,ma. ~ 0.28
is observed. Compared with the claimed accuracies in

T See Fig. 2 in ref. [9] and also note that no attempts have
been made there to verify the overall energy balance.
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their solutions, the estimated values of ¢ are relatively
large.

For more quantitative comparisons, the present
numerical method is applied to solve the inward sol-
idification of a binary alloy confined in a sphere of
radius /*, which is treated in ref. [9]. (The details can
be found there, but recall that the variable latent heat
from the A-T relation is used in our study.) Numerical
solutions are obtained as described previously but
with some minor modifications. The parameters in
Cases A and B of Table 2 are the same as those
used for Figs. 2 and 8 shown in ref. [9], respectively.
Computation is performed with M, =30 and
M, = 20. The overall energy and solute mass balances
are satisfied to within 0.15% at each time step. The
converged solutions are obtained to within ten iter-
ations for both cases. The present numerical solutions
for Case A show that the dimensionless time for the
complete solidification is T = 2.79 where 7 is the same
as y defined in the work of Gupta [9]. However, in his
numerical results the complete solidification was not
attained even for 7 = 3.28, which is unphysical due
to violation of conservation principles. The present
numerical results corresponding to Case B are shown
in Fig. 3. The numerical results from ref. [9] are also
shown for comparison. In particular, this study gives
the following results at time 7 = 0.195.

@ The thickness of the solid phase (say d) is found
to be 0.1741*,1.e. §5/(2A/(D 1)) = 1.09 with the value
of A given in Table 2.

11k

0.9 ]
6; ~
0.7 7
L\ Freezing
Front
J{ osll . .
015
C. 013t
i B '
0.11} 3 :
__T__ 0.09 L I I | o i L !

00 02 04 06 08 10
z/l*

FiG. 3. Temperature and solute concentration profiles for

various elapsed times: numerical results from ref, [9] (solid

lines), and from this study (dotted lines). In the solid phase,

the concentration profiles obtained from this work are not

shown in the figure. A dimensionless time 7 is the same as y
defined in ref. [9].
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® The solutal boundary-layer thickness in the
liquid phase (say d.) is found to be . = 0.0445.

The corresponding concentration profile from ref.
[9] clearly shows that d./ds > 0.15 which is sub-
stantially greater than that from this study. Note that
in the case of a planar geometry a value of §/ds is the
same as that of 2./4, which is about 0.05 (from Table
2). Apart from the disagreement with the con-
centration profiles, the present numerical results
shown in Fig. 3 agree well with those from rel. [9]
mainly because of the condition ¢5 = ¢ used in Case
B. However, when compared with the numerical stud-
ies in ref. [9], our numerical method allows for a
substantial decrease in the number of grid points (up
to an order of magnitude smaller). The results in Fig.
3 show that an artificial mushy zone exists in the
vicinity of the interface and that this is consistent with
the observation in ref. [14] mentioned earlier.

3.2, Model II

In this model, the growth of the mushy zone is
controlled by heat diffusion [15-17] and solidification
occurs in a range of temperatures between solidus and
liquidus temperatures. We use indices 1--3 to designate
the solid, mushy and liquid phases, respectively, and
assume that the densities are equal between phases
(i.c. p, = p> = p,). The effect of solute concentration
is considered only through a linear relation between
the solid fraction ;" and the temperature in the mushy
zone T, such that [17]

(3D

where f, is a constant solid-fraction at the solidus
front £, and the fixed values of T, and T, indicate
the solidus and liquidus temperatures, respectively
(T, < T3). The thermophysical properties in the
mushy zone are assumed to be constant as [17]

ks v i
Ay =", ko= /:lil_\v
TPt ’ 2
C) +¢ 3 f|Ah
¢y = e e (32)
- 2 Ty—T,

where ¢, is an effective specific heat into which the
linear release of latent heat is absorbed. Owing to the
use of these simplified relations, exact closed-form
solutions can be obtained as in refs. [15-17]. (How-
ever, the solid fraction used in refs. [I5, 16] varies
linearly with distance instead of temperature.) Both
planar and cylindrical geometries are considered as
follows. The initial and boundary conditions are

’212{::() at =0
T,=T, at 1=0 and x=o
if n=0: T, =T,
at x=0 (33)
i n=1: lim2axk,-=+=Q
x— ox

C.-). Kim and M. Kaviany

where () is a heat sink at the origin {17]. The interface
conditions are

Ti = Ti+| = T,-

oT, oty dx;
kil =k s = b=k (34)

where i = 1, 2. The latent heats at both interfaces are
specified as

hy—hy = A¥(1—7) at T=T,

hy~hy=0 at T=T, (35)
Then, it can be easily shown that, in the case of
¢, # ¢;, the above system of equations is thermo-
dynamically consistent only when h, and T* are

chosen such that
hy = co(Ty=To) + Al*+ oo (T, = T*),

T* = f‘j_f:

~

4

(36)

However, this point was not clearly mentioned in ref.
[17]. Note that if f, = 1 the enthalpy discontinuity no
longer exists throughout the system. In the case of
planar geometry, analytical solutions are obtained
in terms of a similarity variable # = x(dat,0)" ¥ as
follows:

(1) =22, (000), 2500 = 245/ (221)

=T, ef(Bin)

T\ —T, erf(B,4)
T,~T,

T, =T, erf(i)—erf(4,)
T,—T, _ erfe(fa)
To—T1, erfc(ffaiy)

n= () - J(2)

In the above, the similarity constants 4, and 4, arc
obtained from

el(fs=Ty) _ exa-T))

H(ﬁz)vz) G(ﬁz)~},‘20(l,)

a7 =T el =Tk

G(B4y) H(B14,)

where 4,, = (1,/2,)exp(#3—47) and the functions

G(x) and H{(x) arc defined in equation (24). The

above analytical solutions were derived from those in

ref. [16] by modifying the expression for the solid

fraction. Numerical solutions are obtained for various
values of f, with other parameters given below

Ste = (0.435, ky = 0.92k,
g, = 0870, 0, = 0.946, #, = 1.062.
(39)

erf () —erf(4,)

(37

= AR¥(1—f1) (38)

¢y = 1.20c,

i, = 1.054,
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Table 3. Analytical solutions for 4, and 4, from equations

(38)
.fl 'll ’J~2
0.0 0.2238 1.3550
0.3 0.3041 1.5661
0.6 0.3586 1.6820
1.7835

1.0 0.4129

The exact solutions for 4, and A, corresponding to
the above case are listed in Table 3. Note that if f; = 0
the latent heat is released at the solidus front only.
Numerical solutions are obtained by employing the
power-law scheme and by using M, = 10, M, =20
and M, = 100. From the nature of the problem,
wj = 0and w’; = w) are chosen so that the correction
equation (17) yields two linear equations for two
unknowns «’ and ). Converged solutions are
obtained typically within five iterations. Numerical
results for A, and 4, are found to agree to within 0.4%
with the corresponding analytical solutions during the
interval 10™* < §,/I* < 10°.

In the case of cylindrical geometry, exact solutions
are found in ref. [17] where a system made of alumi-
num-—copper alloy containing 5% copper [15] is con-
sidered to illustrate analytical results. The present
numerical method is applied to this problem with
M, =50, M, =200 and M, = 200. The parameters
used in the computation can be found in ref. [17].
Computation is performed without initializing from
the exact solutions, and, therefore, a large number of
iterations (up to 300) were required at small times.
However, numerical solutions converge within three
iterations during the interval 107* < §,//* < 10°. This
reduction in the number of iterations is due to the
asymptotic behavior in the solution discussed pre-
viously. The values of A, and 4,, as defined in equation
(37), are listed in Table 4 where the present numerical
solutions and the exact solutions from ref. [17] are
compared. A disagreement between two results at a
small value of Q can be improved (to within 1%) by
increasing the number of grid points.

3.3. Model IT1

This model assumes that the specific enthalpy and
the thermal properties in the mushy zone (designated
by no subscript) are weighted with respect to the local
solid fraction [32] as

Table 4. Analytical solutions for similarity constants A; and
A, from ref. {17] and the present numerical results (shown
inside parentheses)

QWm] B4 A
20000 0.00102 (0.00121) 0.8367 (0.8366)
30000 0.00712 (0.00717) 0.9777 (0.9777)
40000 0.01879 (0.01883) 1.0724 (1.0724)
50000 0.03377 (0.03384) 1.1433 (1.1435)
70000 0.06694 (0.06716) 1.2476 (1.2482)
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h=Ffhs+(=fh
c=fes+(1-fey
k=fks+(1—=f)ke

where p = pg = p, is assumed, and /g and £, are deter-
mined from equation (1). The local solid fraction,
which is commonly related to the liquidus curve of
the phase diagram [18, 19], is expressed as an explicit
function of the temperature. In particular, a planar
geometry is considered ; thus the heat diffusion equa-
tion in the mushy phase is written as

0 0 (k Oh (koY

a=a\aa) Ta\ea) @
where i = hg—h [23]). The combined flux terms
(including the interfacial fluxes) are upwinded and a
linear profile for  is used in deriving discretization
equations. The motivation for this special treatment
is explained in ref. [24]. However, the solid and liquid
phases are treated by employing the power-law
scheme as in other models. Due to the nonlinearity,
the numerical solution of equation (41) requires
iterations. If the temperature field in the mushy zone
is known at the previous iteration, all other quantities
(such as f, hs and A, etc.) are then evaluated from
this known temperature field. Since 4 is the dependent
variable in the discretization equation [24], a new
value of 4 (say A") is obtained as the current solution.
Then, the temperature is updated using the value of
K" as follows. Expanding #" in terms of /" and T’ and
neglecting higher-order terms gives

AN A
= h+ <6T>T+(5'f>f

A = h+ {c—k(hs —h) <g;)}T/

from which the updated temperature is determined as

¥ ~h
¢+ (hs—h)(df/dT)

Iteration continues with the updated temperature field
until converged solutions are obtained.

As an illustrative example, the system considered
in Model 1I is selected due to the close relationship
between this model and Model II. Therefore, the
initial and boundary conditions are given in equations
(33) and (34), and a reference temperature T* is given
in equation (36). Also, the parameters in equation
(39) and the f~T relation in equation (31) are used;
however, the present numerical method can accom-
modate a general f/~T relation. When the interfacial
fluxes into and away from the mushy phase are evalu-
ated, including the last term of equation (41), the
correction equation (17) is still applicable to this prob-
lem and gives two linear equations for o’ and w’.
Computation is carried out with M, = 20, M, = 50

(40)

or

(42)

™W=T+T =T+

43)
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and M, = 100. Similarity constants 4, and A, are
evaluated from the numerical solutions for the pos-
itions of the solidus and liquidus fronts such that

i
2/ (a*n)

where o* is determined from equation (32), ie.
o* = a,, rather than from equation (40). As was dis-
cussed, the transformed coordinate plays the role of
similarity variable and thus eliminates the dependence
of the temperature distribution on time. This is clearly
shown in Fig. 4 where the temperature profiles for the
case of f, =1 are plotted with respect to the trans-
formed coordinate. The solid lines represent the
numerical results, while the points are the exact solu-
tions that are obtained from equation (37) with the
values of 4, and 4, evaluated from equation (44). In
Fig. 4, a single curve within each phase is in reality
the superposition of the numerical solutions in the
range of 107* < §,//* < 10. Agreement with exact
solutions is rather good (closed-form solutions are
possible only in the solid and liquid phases). The
temperature profiles in the mushy phase for different
values of f, are shown in Fig. 5 where the values of
A, and A, are also listed. Converged solutions are
obtained within ten iterations during the initial tran-
sient period and thereafter within four iterations. Fig-
ure 5 shows that, as the value of f, increases, the
temperature profiles are shifted towards the solidus
front. This can be explained from the following argu-
ment, which is similar to that leading to equation (28).
By manipulating equations (6) and (44), the Peclet
number at a given control-volume surface located
within the mushy zone can be expressed as

A= PR N /17 =
NI N

(44)
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FiG. 4. Temperature distribution in the solid, mushy and
liquid phases for the case of . = 1: numerical solutions
(solid lines) and exact solutions (circles).
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An examination of the above equation using the
values of 4, and 4, from Fig. 5 shows that the Peclet
number increases with an increase in f 1. Therefore, as
the value of 7, increases, a higher upwinding occurs
due to an increased Peclet number. Also, since the
direction of pseudo-convection is towards the solidus
front, the temperature profile is shifted towards the
solidus front.

In refs. {18, 19], the wall temperature is set above
the solidus temperature. Thus a single moving inter-
face separating the mushy and liquid phases (i.e. liqui-
dus front) is considered. Their numerical solutions are
based on the use of ordinary differential equations
expressed in terms of a similarity variable. These
approaches require the analytical solutions for the
liquid phase and, therefore, are of a limited applic-
ability to semi-infinite domain problems. Note that
the present numerical method has eliminated such a
limitation and is also applicable to finite-domain
problems.

4. SUMMARY

The conservative transformed equation recently
proposed by the authors is utilized to solve diffusion-
controlled solidification of binary alloys. The numeri-
cal method suggested here is suitable to treat a certain
class of diffusion models based on the assumptions of



A fully implicit method for diffusion-controlled solidification of binary alloys

macroscopically planar interface and local thermo-
dynamic equilibrium.

In the literature, analytical solutions are normally
found for unbounded-domain problems by con-
verting partial differential equations into ordinary
differential equations in terms of a similarity variable.
Analytical solutions are sometimes combined with
numerical solutions based on conventional methods
such as the Runge-Kutta integration. In the present
numerical method, the partial differential form is
retained in the transformed coordinate, which often
plays the role of a similarity variable. As a result, an
analogous pattern is found between the numerical
and the analytical solutions. However, the present
numerical method has a capability to treat finite-
domain problems as well, and its formulation is based
on the conservation principles and thus is consistent
with well-established solution methods in treating
fixed-boundary problems. Furthermore, when com-
pared with the existing numerical methods based
on multi-domain approaches, the present method
employs a remarkably different solution procedure.
As such, the temperature and position corrections,
similar to the pressure-correction widely used in
single-phase convection/diffusion problems, are intro-
duced to overcome the difficulties associated with
unknown location of phase interface and unknown
interface temperature. The correction equations are
derived from the conservation of the interfacial fluxes
and are solved simultaneously to update the inter-
mediate solutions during iterations. Therefore, the
present numerical method is characterized by a fully-
implicit treatment of the field equations and the inter-
face conditions, and, consequently, the conservation
principles are obeyed within a preselected tolerance.

The present numerical method is tested against sev-
eral diffusion models for which analytical solutions
are at least partially available. In the case of no mushy-
zone models, both the temperature and concentration
fields are treated by employing proper renor-
malization of the length scales to resolve steep con-
centration gradients near the phase interface. Solu-
tions to the mushy-zone models, in which the growth
of the mushy zone is controlled by heat diffusion,
are also studied. In addition, an assumption that is
thermodynamically inconsistent but found in some
of the previous studies is addressed and examined
quantitatively. A novel technique developed in this
study enables the numerical solution at each time step
to converge within a small number of iterations. Also,
numerical solutions agree with the available analytical
solutions to within reasonable accuracies. The present
numerical method can potentially treat the two-
dimensional cases of the models considered here.
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UNE METHODE ENTIEREMENT IMPLICITE POUR LA SOLIDIFICATION
CONTROLEE PAR LA DIFFUSION DANS DES ALLIAGES BINAIRES

Résumé—Une méthode numérique développée récemment pour des problémes de changement de phase
d’un composant unique est étendue au traitement de modéles de solidification contrdlée par la diffusion
pour des alliages binaires. Les modéles multi-domaine soulévent une difficulté spéciale associ¢e 4 la position
inconnue de l'interface et & la température de transition de phase. Cette difficulté est efficacement traitée
ici en définissant des corrections semblables 4 celles utilisées dans les problémes de convection
monophasique. Les équations et les conditions interfaciales sont traitées de fagon complétement implicite
i I'aide des équations de correction qui sont développées 4 partir de la conservation des flux interfaciaux.
Comme vérification, plusieurs modéles de diffusion conduisant & des solutions analytiques sont considérés.
Les solutions numériques s’accordent avec les solutions analytiques disponibles. L'hypothése trés courante
d’une chaleur latente constante est trouvée étre thermodynamiquement inconsistante dans certaines con-
ditions et elle est clarifiée et corrigée. Une procédure d’itération unique, suggérée dans cette étude, est
remarquablement efficace et elle conduit a4 une convergence rapide.

EIN VOLLSTANDIG IMPLIZITES VERFAHREN FUR DIE
DIFFUSIONSKONTROLLIERTE ERSTARRUNG BINARER LEGIERUNGEN

Zusammenfassung—Ein kiirzlich entwickeltes numerisches Verfahren fiir Phasenwechselprobleme mit einer
Komponente wird erweitert, um vorhandene Mehrzonen-Modelle fiir die diffusionskontrollierte Erstarrung
bindrer Legierungen behandeln zu konnen. Die Mehrzonenmodelle rufen im Zusammenhang mit der
unbekannten Lage der Phasengrenzfliche und der Phaseniibergangstemperatur spezielle Schwierigkeiten
hervor. Solch eine Schwierigkeit wird hier dadurch wirksam beseitigt, da Korrekturen definiert werden,
dhnlich denen, die bei einphasigen Konvektionsproblemen gebriuchlich sind. Die Feldgleichungen und
die Bedingungen an der Phasengrenzfiiche werden durch die Temperaturgleichungen implizit behandelt.
welche sich aus den Stromdichten an der Phasengrenze ergeben. Zusitzlich wird beim Auftreten einer
groBen Abweichung zwischen thermisch- und konzentrationsbedingter Stoffdiffusion eine erneute
Normierung der Lingenskalen empfohlen, um die rdumliche Auflésung sowohl des Temperatur- als auch des
Konzentrationsfeldes zu verbessern. Als Verifikation werden mehrere Diffusionsmodelle betrachtet, fir die
auch analytische Losungen vorliegen. Die Ubereinstimmung ist gut. Es wird auBerdem herausgefunden,
daB die weithin benutzte Annahme konstanter latenter Wérme unter bestimmten Bedingungen thermo-
dynamisch inkonsistent ist. Dieser Punkt wird gekldrt und korrigiert. Ein cindeutiges lterationsverfahren,
das in der vorliegenden Untersuchung vorgeschlagen wird, hat sich als bemerkenswert wirksam herausgstellt
und fiihrt zu schneller Konvergenz.

HESIBHBIII METOJ] PACYETA KOHTPOJIMPYEMOI'O JUP®Y3HEN 3ATBEPJIEBAHU A
BUHAPHBIX CITJIABOB

Amotauns—HeaBHo papaboTaHHbIH YHCIEHHBIH METOI PELICHHSA 3a/1a4 OJHOKOMIIOHEHTHOro ¢aso-
BOTO MEpexo[a PACHpOCTPAHAETCH Ha HCCIICAOBAHHE HEKOTOPBIX MHOTOMOMEHHBIX MOJENEH I KOHT-
ponupyemoro muddysmeir mpouecca 3aTsepieBaHHs  OHHapHBIX  CIUtaBoB.  Micmosb3oBanme
MHOTOJOMEHHBIX MOAEJEH CBA3aHO C TPYAHOCTAMH, 0GYCIIOBJICHHBIME OTCYTCTBHEM NAHHBIX O Pacmo-
70XEHHUH IPaHHILI Pa3jieNa H Temnepatype basoBoro nepexofa. 1o 3aTpyanenue 3bQexTUBHO yCTpaH-
AETCH MOCPEACTBOM ONpEJENiCHAs NOTPABOK, AHAJOTHYHBIX BCTPEYAIOLIMMCS B KOHBCKTHBHEIX 3a/1a4ax
onHO(A3HBIX CHCTEM. VDABHEHHS W YCIIOBMA Ha IPaHHIE pasicaa GOpMYyNHpYIOTCS B HesiBHON dopwme,
MCXOMIA W3 ypaBHEHH: COXPaHEHHs NOTOKOB Ha rpanmme. Kpome Toro, mp GOJbIIMX PacXOXICHHAX
MeXy 3HaYeHUsMH KO3GQGMIMEHTOB TEMMNEPATYPOBOOHOCTH M MACCOMPOBOAHOCTH pPAcTBOPEHHOro
BELIECTBA MPEANOJAraeTcs, YTO NEPEHOPMHPOBKA MAcIUTaGoB UIHHBI MOBBILIACT NPOCTPAHCTBEHHOE
paspeleHHe TEMHEPATYPHBIX ¥ KOHIEHTP AUHMOHHBIX noseid. [l NpOBEPKH PacCMaTPHBAKOTCS HECKO-
sibko mogeneit nudipy3un, JONYCKArOIIMX aHAMHTHYECKHe perleHHs. [IpH 3TOM YUC/ieHHBIE PeLIEHHS
XOpOUIO COTJIACYIOTCH C MMEIOIIMMHCH AHATMTHYECKMMH. Pa3bicHAETCs H KOPPEKTHPYETCS UIHPOKO
ACTIONL3YEMO€E NPEANONIONKEHHE O MTOCTOAHCTBE BEMYMHBI CKPBITOM TEILIOTHI, KOTOPOE, KaK IIOK43aHO, B
ONpefieNIeHHbLIX YCIOBHAX CTAHOBHTCS HENMPABOMEPHBIM € TOYKH 3peHHMsi TepMoanHamuxd. Ipeptoxen-
HBIl OPHIMHAJBHBIN HTEPALMOHHLIA METON ABJACTCA BeCbMa (hEeKTHBHHIM H NPUBOAMT K GBICTpO
CXOOMMOCTH.



