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Abstract-A recently developed numerical method for single-component phase-change problems is 
extended to treat some existing multi-domain models for diffusion-controlled solidification of binary alloys. 
The multi-domain models invoke a special difficulty associated with the unknown interface location and 
phase-transition temperature. Such a difficulty is efficiently resolved here by defining corrections similar to 
those used in single-phase convection problems. The field equations and the interfacial conditions are 
treated fully implicitly through the correction equations that are developed from the conservation of the 
interfacial fluxes. In addition, when a high disparity occurs between thermal and solutal mass diffusivities, 
renormalization of the length scales is suggested to improve spatial resolution of both the temperature and 
concentration fields. As a verification, several diffusion models that allow for analytical solutions are 
considered. Numerical solutions agree well with the available analytical solutions. The widely used assump- 
tion of a constant latent heat is found to be thermodynamically inconsistent under certain conditions and 
is clarified and corrected. A unique iteration procedure suggested in this study proves to be remarkably 

efficient and leads to fast convergence. 

1. INTRODUCTION 

THE PRESENT study is an extension of our pre- 
vious works [ 1, 21 in which the use of conservative 
transformed equations was suggested in treating the 
single-component phase-change problems. Here, 
we consider the numerical solution to a class of 
diffusion-controlled solidification of binary alloys. 

During solidification of binary systems, the solid- 
liquid interface exhibits a variety of microscopically 
complicated growth structures. There is also present 
a region in which both the solid and liquid phases 
coexist, which is often called the mushy zone. A com- 
prehensive coverage of the solidification of binary 
mixtures is given in ref. [3]. A recent review of the 
various treatments in modeling of the mushy zone and 
their current status is provided in ref. [4]. Among a 
vast number of existing mathematical models for alloy 
solidification, we focus on some specific models based 
on the assumptions of macroscopically planar inter- 
faces, local thermodynamic equilibrium, and the 
transport of heat and/or solute mass by diffusion 
alone. For convenience, these models are classified 
into four groups, which are briefly described below. 

Model I assumes the existence of a single interface 
that distinctly separates both pure solid and pure 
liquid phases. The diffusion equations for the trans- 
port of heat and solute mass are written for individual 
phases, and their solutions are coupled through the 
interfacial conditions. Some analytical solutions exist 
in one-dimensional geometry [5-91. Also, some semi- 
analytical and numerical solutions are available in the 
literature [l&13]. However, depending on the mag- 
nitude of the parameters, solutions to Model I may 

exhibit an arbitrary mushy zone in the liquid phase 
[14]. In Model II, the mushy zone is taken into con- 
sideration by assuming that its growth is controlled 
by heat diffusion ; thus solidification occurs in an a 
priori known range of temperatures between solidus 
and liquidus temperatures. The local solid fraction in 
the mushy phase is assumed to vary linearly with 
either distance or temperature. Also, fixed values of 
effective heat capacity and thermal conductivity are 
used in the mushy zone, and several closed-form solu- 
tions are available [15-171. Model III is the same as 
Model II except that the thermophysical properties of 
the mushy phase are weighted with respect to the local 
solid fraction, which is determined from the equi- 
librium phase diagram. Analytical solutions com- 
bined with numerical solutions can be found for semi- 
infinite media [18, 191. Model IV is an extension of 
Model III and includes the solute mass diffusion. 
Therefore, the temperature and concentration fields 
are fully coupled through the interfacial conditions 
[20, 211. This classification of existing models is made 
only for ease of presentation of the numerical method ; 
for example, the distinction between Models II and 
III is made due to the different treatment of the mushy 
zone. 

In this study, the numerical solution to Models I- 

III (excluding Model IV) are formulated by using a 
multi-domain approach. A unique feature of the multi- 
domain approach is the requirement for the imposition 
of the appropriate interfacial conditions. Generally, 
the temperature is assumed to be continuous at 
the interface, i.e. local thermodynamic equilibrium is 
assumed. In addition, two thermodynamic relations 
are specified at the interface; one is the equilibrium 
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NOMENCLATURE 

‘4, A,, functions in finite-difference M* reference thermal diffusivity of the mushy 
equations phase [m’s ‘1 

‘1, modified influence coefficients Bfl dimensionless number 

c, solute concentration field J-6 effective diffusion coefficient 

(‘I specific heat [J kg ’ Km ‘1 I, 
JI variable in correction equation 

cr ratio of es/c,_ 0,. solutal boundary-layer thickness [m] 

D, solute mass diffusivity [m’ so ‘1 4 solid-phase thickness [m] 

(1, diffusion conductance 6, thickness of phase i [m] 

F, total mass flux I-: convergence criterion, equation (18) 

1; 
solid fraction in the mushy phase 'I similarity variable 

Gl H 
solid fraction at solid--mushy interface (I, (6,) dimensionless temperature. T,/T* 
functions defined in equation (24) (f,iT*) 

Ah latent heat [J kg-‘] 1. similarity constant or dimensionless 
Ail* reference latent heat at T* [J kg ‘1 solid-phase thickness 

14 specific enthalpy [J kg-‘] 4 dimensionless thickness of solutal 
hf reference enthalpy [J kg- ‘1 boundary layer 

;, 

phase index or boundary index 4, dimensionless thickness of thermal 
total flux of @$ boundary layer 

[jl, &flux discontinuity at interface i ~1,~ (P,~) variable, &$,,/a?, (Z&,H/o??,) 
K partition coefficient, mL/ms -’ 

ii transformed coordinate for phase i 

k, thermal conductivity [W m ’ Km ‘1 P, density [kg m ~‘1 
I* reference length [m] Pr ratio of ps/pr 

M, total number of grid points within phase i 0 parameter. equation (30) 

m, coefficients for liquidus and solidus t dimensionless time 
curves [K] general dependent variable 

N total number of phases. Fig. 1 $ t$+41!‘1 
11 geometry index ti 11, -h 
P Peclet number w; dimensionless number for position 
p_ y, coefficients in correction equation (17) correction. 

Q heat sink [W mm ‘1 

Ste Stefan number, Ah*/(c,T*) Superscripts 

T, temperature field [K] N corrected value 
T* reference temperature [K] * reference 

TI- freezing temperature of pure solvent [K] A interface 

i’: temperature at the interface i [K] correction term. 

t time [s] 

Al time increment [s] Subscripts 

4 velocity [m s ‘1 i, i+ I phase or boundary indices 

6 variable, s”+ ‘, (n + 1) iA (iB) ahead (backward) of interface i 

11, variable defined in equation (15) L liquid 

.Y spatial coordinate [m] S solid. 

.12, position of interface i [ml. 
Other symbols 

Greek symbols qIA - (P,~ for any quantity cp 

2, thermal diffusivity [m’s_ ‘1 absolute value of cp. 

phase diagram [3], and the other is the enthalpy- varies with the interface temperature. However, WC 

temperature relation which leads to the definition of observe that this variable latent heat has been unre- 

the latent heat [22]. The concentration discontinuity at cognized in a large number of previous works. Under 

the interface is dependent on the interface temperature these circumstances, the use of constant latent heat 

(from an equilibrium phase diagram), as is the en- leads to a thermodynamic inconsistency and, as a 

thalpy discontinuity at the interface (from enthalpy- result, violates the overall conservation of energy. 

temperature relations). When the assumed constant (Only when the variation in the latent heat is negli- 

specific heats are different between phases, this gible, can the overall energy conservation be satisfied 

enthalpy discontinuity at the interface (i.e. latent heat) within an acceptable range.) Therefore, the validity of 
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the use of a constant latent heat should be examined 
for case application. We will examine the consequence 

of the use of the thermodynamically inconsistent 
assumption in connection with our formulation of 

numerical solutions. It is interesting to note that in 
contrast to the existing temperature-based for- 
mulations, in which the constant latent heat has been 
liberally used, the variable latent heat has been cor- 

rectly implemented in enthalpy-based formulations 

such as in refs. [23-251. 
The major difficulties with multi-domain ap- 

proaches are associated with unknown interface 
location and/or interface temperature (these can even 

be time dependent). Determination of these un- 
knowns requires the simultaneous solution of indi- 
vidual field equations that match the interfacial con- 

ditions; thus the problem is highly nonlinear. As a 
result, the capability of accurately tracking the inter- 
face location and/or accurately predicting the inter- 

face temperature is crucial in developing a numerical 
method. Here, we propose a fully implicit method 

that overcomes these difficulties by using a successive 
iteration. A novel iteration scheme is developed that 
is analogous to the SIMPLE algorithm [26] using the 
pressure-correction equation to solve the momentum 

equations. For this, we introduce a general tem- 
perature- and position-correction equation that 
improves the intermediate solutions during iterations. 

The correction equations are derived from the con- 
tinuity conditions of the interfacial fluxes and are 

solved simultaneously to update the interface tem- 
perature and position. This unique solution procedure 
proves to be efficient and allows for rapid conver- 
gence. The present numerical method is applicable to 

both unbounded- and finite-domain problems and is 
able to account for a general phase diagram. Fur- 
thermore, in the case of Model I, the existence of steep 
concentration gradients near the interface is found to 
be easily handled by renormalizing the length scales 

in the liquid phase using the thermal and solutal boun- 
dary-layer thicknesses. This allows for a more efficient 
computation compared with the bilinear mapping [ 121 

and the use of a large number of grid points [9]. The 
performance of the present numerical method is tested 
against a few example problems. Even without any 
modification, the present numerical method is apph- 
cable to some practical problems, such as the model- 
ing of the microsegregation in binary metallic alloys 

[271. 

2. NUMERICAL FORMULATION 

In this section, we describe the numerical method 
applicable to Models I and II. The treatment of Model 
III requires minor modifications, which will be dis- 
cussed later. Figure 1 illustrates a multi-domain sys- 
tem for which an index i is assigned to each phase and 
.?, stands for the right boundary of phase i. The density 
of phase i is assumed to be constant, and its specific 
enthalpy h, is defined as 

FIG. 1. A multi-domain system composed of N dis- 
tinguishable phases. A representative phase is highlighted. 

s T 
h, = cidT+h,* 

T’ 
(1) 

where h: is the reference enthalpy at a reference tem- 
perature 7’*. Unless otherwise specified, h,* = 0 will 
be used for a pure solid phase and hp = Ah* for a 
pure liquid phase, where Ah* stands for a rejkence 

latent heat at T*. For the sake of brevity, we use a 
general dependent variable 4 to denote either a spec- 
ific enthalpy h or a solute concentration C (when 4 

stands for the mixture mass, 4 = 1 will be used). Then, 
the governing equation for 4, is 

where n is the geometry index, Fi = piai for 41 = hi, 

and Fi = piD, for 4, = C,. The moving boundaries are 
immobilized by introducing a coordinate trans- 
formation x = x(5,, t). The above equation is then 

transformed into [I] 

with 

v, = &+i 

XT, a& 
."=m-caxiac;,x 

F,=p+u;-;;) 

where F, is the total flux of mixture mass and J, is that 
of 4,. The immobilization of the moving boundaries 

creates the pseudo-convection in the transformed 
coordinate [28] so that F, can have a non-zero value 
even in the absence of the velocity field. 

Now, suppose that phase transition is occurring 

across an interface i. At this interface, the temperature 
is continuous from the assumption of thermodynamic 
equilibrium, and the interfacial fluxes are continuous 
from the conservation principles, i.e. 

r,= Ti,,, F,=4+,, J,=Ji+, (5) 

where all the quantities are evaluated at the interface 
2,. In addition, the values of bt and $,+ , at the inter- 
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; Phase i 

Table 1. Function A(P) for different schemes (from ref. [26]) 

Scheme 

Central difference 
Upwind 
Hybrid 

Power law 

Formula for A(P) 

I --0.5(PI 
I 

max (0, I -O.S]P]) 
max (0. (I -0.1/P 1)5) 

Phase i+l i 
6i+l / 

Interface i 

FIG. 2. Finite-volume elements adjacent to the phase inter- 
face i. 

face are determined from the given thermodynamic 
relations (equilibrium phase diagram for 4 = C and 

enthalpy-temperature relations for 4 = h). When the 
values of .G, and ?, are known, numerical solutions of 
equation (3) are easily obtained as described in ref. 
[I]. Therefore, only the special features arising from 

the determination of i-, and Ti will be presented below. 
For convenience. subscripts iA and iB indicate 

uheuri and huckward of the interface i, respectively. 
Therefore, whenever 4 varies discontinuously across 
the interface i, each value of 4 at the interface will be 

designated by diA and I$,~, respectively, as shown in 
Fig. 2. Next. we use the linear transformation 

.\- = s,<,+.<, ,. d, = .?, - 4, , (6) 

where 0 d <, < I and 6, is the thickness of phase i. 
For efficient computations in treating Model I, 1, is 
allowed to take different values for the cnthalpy and 
concentration fields. This is because a high disparity 

between thermal and solutal diffusivities causes the 
corresponding boundary-layer thicknesses in the 

liquid phase to be substantially different. For the finite 
control-volumes adjacent to the interface i, shown in 
Fig. 2, the inter-facial &fluxes are expressed as 

with 

b; 

iA 
= $4 + h.4 4 = & t $g 

2 - ‘” 2 (8) 

where j,, is the total &flux entering phase (i+ 1) and 
j,, is that leaving phase i. We define the function 

A,,,(P) as 

‘4,,(P) = A(P)+o.51PI (9) 

where .4(P) is selected from Table I for the desired 
scheme. The rationale for introducing this modified 
function A,(P) will be discussed in the next section. 

From equation (5), we have 

[Q, E j,, -j,, = 0. (JO) 

However, unless .I?, and ?, are correctly specified, the 
resulting solution may not satisfy the above equation. 

Therefore, newly-guessed values of .f, and fL should 
be found such that they result in smaller [jj,. These 
iterations continue until equation (10) is satisfied 
within a prescribed tolerance. One simple way to 
improve the tentative values of .8, and F, is to begin 

by assuming that the correct values of .Q, and ?) are 
obtained from 

e = ?,+?:, _<; = .?,( 1 + co;) (11) 

where ?: will be called the tmperature correction and 
w: the position corrrction. The correct value of j,, is 
then expressed as 

1% = (~+P:)($,,+&*) 

The new correction terms appearing in the above 
equation are to be determined by retaining only the 

first-order correction terms as follows. Expanding 
6: in terms of T: gives 

and defining p,a = (&$,,/Zi”,) yields 

d;:& = /l,,& ?;. (13) 

The correction term 4iA is assumed to depend only 
on ?: and approximated as 

d:A = (1 -;.,.&,A? (14) 

where )I,~ is a constant chosen properly. A rigorous 
analysis for the determination of y,,, is not attempted 
here, since, as will be shown, even a constant value of 
yrA leads to fast convergence. By combining equations 
(4) and (11) and by assuming no contribution from 
the velocity term, &becomes 

F = -c;,to;. ^ - 
p,.?:” ’ 

L’i - -277 
(15) 

From 6,+, = 1,+, - 2, and equation (I I), we have 

S’ ,+ I = a+ ,w:+t+ ,tw:+ I -WI). 
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Then, a correct value of dz is expressed as 

d;“A = &(I +Q()” 

or 

d:A cl... = (n_l)w:+~~l(W:_~~+,), (16) 
,A r+ I 

Next, for simplicity we assume aJaiA = dJdrA by 
neglecting any change in the value of Am(fiJdcA). At 
this point, by using the correction terms derived so 

far, jz can be expressed in terms of F;, w: and w:+ , 
If we treat j$ in a way similar to the above and insert 

resulting expressions for jz and jg into equation 
(lo), we obtain the following first-order correction 

equation : 

w:+q,f:+[.q, =pinw:+ I +p,d4 I (17) 

where 

P, =P,a+Pie+(n--)[ij-~~ni--i[e~, 

q, = (WJ), + (W?),, + [(I -li/W~, 

p,* = pqM$),,, ptB = +LF&. 
zt I 

The above correction equation (17) is found to be 
readily solvable since the number of correction equa- 

tions is always equal to that of the unknowns. Due to 

the approximate nature of the correction equations, 
the use of an underrelaxation is helpful in obtaining 
converged solutions. Note that, if all the values of 
[j& are zero, no corrections are required. Once the 
required correction terms are determined, the ten- 

tative values of +?-, and 3 are updated from equation 

(1 I), but the interfacial &values are determined from 
the given thermodynamic relations. Iteration con- 
tinues until the convergence criterion 

is satisfied, where E is a prescribed tolerance. In the 

following test problems, after some trial runs, the 
value of E is selected to be 0.001. An initial guess for 

F=;” (thus a;“) can be obtained explicitly from equation 

(7) as 

(19) 

which is iden tical to equation (18) in ref. [ 11. In Model 

I, either 4 = C or h can be used to evaluate @ with 
the interface temperature fixed (i.e. ff” = fJ. Alter- 
natively, the values of p! and $ at the previous time 
step can also be used as the initial guesses for fiy and 
F;” (note that equation (19) reduces to p;” = & when 
[[Q, = 0). 

The overall solution procedure presented above 
resembles that used for solving the momentum equa- 
tions discussed in ref. [26]; for example, [_?I, in the 

present study plays a role similar to the mass source 

in the SIMPLE algorithm. 

3. TEST PROBLEMS 

3.1. Model I 
Consider first the solidification of a dilute binary 

alloy in a semi-infinite plane for which phases 1 and 2 

are the pure solid and pure liquid phases, respectively. 
The thermophysical properties, except the latent heat, 
are assumed to be constant within each phase, but 
they may differ between phases. The treatment of 
the latent heat js based on the enthalpy-temperature 

relation given in equation (1). By linearizing the equi- 
librium phase diagram, the liquidus and solidus lines 

are given as 

T, = T,--m,d,, = Tb -mzC,, (20) 

where TF is the freezing temperature of a pure solvent. 
With the interface conditions discussed previously, 
the additional conditions are specified as 

att=O: C1=C2, T2=f2, a,=0 

atx = 0 : 
ac, 

T, = fO, ~ = 0 
8X 

where pO, F’2 (2 T,-m,c’,) and C, are fixed values. 
The analytical solutions subject to the above con- 

ditions are reported in the work of Tsubaki and Boley 
[7] as an extension of Rubinstein’s solution [6]. How- 

ever, a constant latent heat is always used in their 
work ; therefore, when c, # c2, their interfacial energy 

balance becomes inconsistent with the enthalpy-tem- 
perature relations on which their temperature-field 

equations are based. Therefore, modified analytical 
solutions, which are thermodynamically consistent, 
are given below for the completeness. Using the 
enthalpy-temperature relation (1) at the interface and 

introducing a similarity variable 4 = x(4D,t)- I’>, the 
analytical solutions are 

d,(t) = 2i&,t), C, = Kc’,,\ 

T, -To erf(8 I rl) 
TX-= --- erf (PI 4 

T,-f, _ erfciB2v+8&-1)} 
T, -T2 erfc (/~JP,) 

C,-C’, erfc {q + Ah - 1)) ^1=_____ 
c,,-c, erfc Pa) 
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Table 2. The parameters used in the computation and the corresponding analytical solutions from equation 
(23). Other Parameters are fixed such that c, = 0.1. tn,,Vr = 0.6, mz/TF = 0.4, D,h, = 1 and T* = r, 

Case 12~ cr /I, 

A 1.00 Ii9 
B 1.00 I.0 
C 0.92 0.4 

BL 6” f& SIP /I i.,. ;.I, 0, 
.~ ~~~_~__.^____.__.. _ 

0.7924 I .3378 1.3378 0.9480 
6.5949 0.3368 3 I.957 0.9403 
0.5083 1.5134 21.876 0.9515 

A similarity constant i is obtained from the two tran- 
scendental equations 

where 

(23) 

G(x) = Jrrxexp (x’) erf i-u), 

H(x) = Jnxexp (x’) erfc (x). (24) 

For large values of x, an asymptotic expansion of 

H(x) gives [29] 

In the case of c, # c2, the above analytical solutions 
yield different results from those of Tsubaki and Boley 
[7] since a variable instead of constant latent heat has 

been incorporated into equation (23). The magnitude 
of a few sets of parameters and the corresponding 
analytical solutions from this study are listed in Table 

2. The dimensionless temperature 0, and the dimen- 
sionless latent heat Ste are defined in the Nomencla- 
ture. Each value of i,, in Table 2 is evaluated from the 

analytical solution such that 

---- = 0.01 at q = A+i,. 
41*-4? 

(25) 

Then, if a time-dependent length scale 2J(D:t) is used 
(due to the lack of a physical length scale), A, is 
interpreted as a dimensionless thickness of the cor- 

responding boundary layer in the liquid phase and ,I 
as a djmensionless thickness of the solid phase. 

Numerical solutions are obtained by employing the 
power-law scheme and by using h4, = Mz = 20, 
where M, is the total number of grid points within 
phase i. The thickness of the solid phase, 6 ,, is the 
same for both the temperature and concentration 
fields. As was mentioned, thermal and solutal boun- 
dary-layer thicknesses in the liquid phase may differ 
from each other depending cm the value of bz 
(approximately of the order of &/A,) ; therefore, each 
value of 62 is selected to be sufficiently larger than the 
corresponding boundary-layer thickness, while a ratio 

of P)2/61 for each #-field is made to remain constant 
at all times. The initial profiles are obtained from the 

analytical solution by assuming that 6,jl* = 10 ‘, 
and the calculation continues until a,//* = 10’ 
(special care is required for start-up with arbitrarily 

specified profiles). For this problem, the correction 
equation (17) provides two linear equations for 
two unknowns w’, and F’, (note that w;, = 0 and 
wi = o’,). Numerical solutions for i, and 6, initially 

undergo transient periods up to K ,il* - 8 x 10 ’ and 
thereafter attain asymptotic values that agree to 
within 0.4% of the corresponding analytical solutions 
listed in Table 2. The converged solution at each time 
step is obtained within four iterations after the tran- 

sient period. When the local temperature and con- 
centration at grid points (in the 5, coordinate) are 
examined, an asymptotic behavior is observed. This 
is because the & coordinate is directly related to the 
similarity variable q ; for example 

where An is a numerically obtained similarity constant 
that is evaluated from &, = 6 t (4D,t) “’ and is close 
to the exact value of 2. Since i, remains nearly 
constant, the transformed coordinate t, has a role of 
another similarity variable; thus the numerical solu- 

tion of T, (or h , ) can be expressed approximately as 

(27) 

Therefore, the transient temperature field in the 5, 
coordinate remains isothermal at each grid point, 
which represents a feature similar to the isotherm 

migration methods [30. 311. although the treatment 
of the grid location and the corresponding node tem- 

perature is reversed. Note that if the above expression 
for T, is inserted into the t~dnsformed equation (3). 
a differential equation dSl;dt = 4i,T D2 is obtained as 
expected. A similar argument is also valid for the 
transformed coordinate sz. 

We now discuss the motivation for the choice of the 
function ,4,(P). First, the interfacial flux of solute 
mass into the liquid phase is considered below, but 
the following argument is valid for other interfacial 
fluxes. From equations (4) and (8) the corresponding 
Peclet number is 
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where 6, stands for a sol&al boundary-layer thick- 

ness. Since 6,/J, - 1,-/J. and 6, = 2&/(D,t), we have 

IPI _ 2p&(A5) IA (28) 

which indicates that a low Peclet number is associated 
with the moving interface (e.g. see Table 2). It is 
evident that the function A,(P) is the most convenient 
form when the interfacial fluxes are central-differ- 
enced utilizing a low Peclet number behavior as 
explained above. Furthermore, even when the power- 
law scheme is preferred to ensure the physical reality 
of the solution [26], the use of A,(P) reduces the 

nonlinearity in A(P) thus leads to fast convergence. 
(This is also valid for other schemes since the interface 

Peclet numbers are relatively low.) 
We further discuss the possibility of the occurrence 

of thermodynamic inconsistency mentioned earlier. In 

order to clarify this point, we rewrite equation (5) for 
f#~ = h in a conventional form as 

ks~z -kL% = psAh$ at x = h(t) 

Ah=h,-hs at T= p (29) 

where subscripts i and i+ 1 are replaced by subscripts 
S and L, s(t) is the location of the interface, and F 

the interface temperature. When the specific heats are 

constant, the latent heat Ah follows from equation (1) 
as 

Ah = Ah*(l +B), (T = (cL-C$T*) (30) 

where o is introduced here to investigate the effects of 
the latent heat variation. Equation (23) shows that 

even for a given binary system the interface tem- 
perature varies, subject to the changes in the external 
parameters such as the wall temperature. Therefore, 
in the case of cs # cL, the use of a constant latent heat 

as in ref. [7] causes an ambiguity. The variable latent 
heat arising from the unequal specific heats between 

phases seems to have significant effects especially 
when r~ changes with time (i.e. cs # cL and time-depen- 
dent ?) as encountered in finite-domain problems [8- 
121. 

As a first approximation, we use the magnitude of 
0 in equation (30) to estimate the degree of energy- 
conservation failure caused by the thermodynamic 
inconsistency. This is because if 0 is negligibly small, 

the overall energy balance can be satisfied within an 
acceptable range. In order to find out the value of 0, 
two sample cases are selected ; one is of the results of 
Fig. 6 in ref. [ 1 l] and the other is of those of Fig. 2 in 

ref. [9]. Based on the parameters used in ref. [l l] 
(selecting T* = 272.65 K and p = 251.95 K), ]&,ax is 
found to be -0.17. For the second case, ]&,ax N 0.28 
is observed. Compared with the claimed accuracies in 

t See Fig. 2 in ref. [9] and also note that no attempts have 
been made there to verify the overall energy balance. 

their solutions, the estimated values of r~ are relatively 

large. 

For more quantitative comparisons, the present 
numerical method is applied to solve the inward sol- 
idification of a binary alloy confined in a sphere of 
radius I*, which is treated in ref. [9]. (The details can 
be found there, but recall that the variable latent heat 
from the h-T relation is used in our study.) Numerical 
solutions are obtained as described previously but 
with some minor modifications. The parameters in 
Cases A and B of Table 2 are the same as those 
used for Figs. 2 and 8 shown in ref. [9], respectively. 

Computation is performed with M, = 30 and 

M, = 20. The overall energy and solute mass balances 
are satisfied to within 0.15% at each time step. The 
converged solutions are obtained to within ten iter- 

ations for both cases. The present numerical solutions 
for Case A show that the dimensionless time for the 

complete solidification is z = 2.79 where r is the same 
as y defined in the work of Gupta [9]. However, in his 

numerical results the complete solidification was not 
attained even for z = 3.28, which is unphysical due 
to violation of conservation principles.7 The present 

numerical results corresponding to Case B are shown 
in Fig. 3. The numerical results from ref. [9] are also 

shown for comparison. In particular, this study gives 
the following results at time t = 0.195. 

l The thickness of the solid phase (say 6,) is found 
to be 0.1741*, i.e. &/(u,/(D,t)) = 1.09 with the value 
of i, given in Table 2. 

R 

-t- 

ci 

0.0 0.2 0.4 0.6 0.8 1.0 

X/P 

FIG. 3. Temperature and solute concentration profiles for 
various elapsed times : numerical results from ref. [9] (solid 
lines), and from this study (dotted lines). In the solid phase, 
the concentration profiles obtained from this work are not 
shown in the figure. A dimensionless time r is the same as y 

defined in ref. [9]. 
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a The solutal boundary-layer thickness in the where Q is a heat sink at the origin 1171. The interface 
liquid phase (say a,.) is found to be 6,. = 0.046,. conditions are 

The corresponding concentration profile from ref. 
[9] clearly shows that S,./& > 0.15 which is sub- 
stantially greater than that from this study. Note that 

in the case of a planar geometry a value of 6,/d, is the 
same as that of 3.,./i., which is about 0.05 (from Table 

2). Apart from the disagreement with the con- 
centration profiles, the present numerical results 

shown in Fig. 3 agree well with those from ref. [9] 
mainly because of the condition c, = cL used in Case 

B. However, when compared with the numerical stud- 

where i = 1, 2. The latent heats at both interfaces are 
specified as 

hz-h, = Ah*fl-,1’,) at T= f, 

h3-hz =0 at T= f,. (35) 

ies in ref. [9], our numerical method allows for a 
substantial decrease in the number of grid points (up 

Then, it can be easily shown that, in the case of 

to an order of magnitude smaller). The results in Fig. 
c, # c3, the above system of equations is thermo- 

3 show that an artificial mushy zone exists in the 
dynamically consistent only when hz and T* arc 

vicinity of the interface and that this is consistent with 
chosen such that 

the observation in ref. [14] mentioned earlier. h, = (.2(TZ-~z)+Ah*+(.l(~?-7-*), 

3.2. Model II 
In this model, the growth of the mushy zone is 

controlled by heat diffusion [15-l 71 and solidification 
occurs in a range of temperatures between solidus and 
liqujdus tempe~dtures. We use indices l--3 to designate 

the solid, mushy and liquid phases, respectively, and 
assume that the densities are equal between phases 
(i.e. p, = pz = p>). The effect of solute concentration 

is considered only through a linear relation between 
the solid fraction j” and the temperature in the mushy 
zone T,, such that [ 171 

(31) 

where f, is a constant solid-fraction at the solidus 
front 4, and the fixed values of f, and f? indicate 
the solidus and liquidus tempe~tures, respectively 
(f, < ?,). The thermophysi~dl properties in &he 

mushy zone are assumed to bc constant as [17] 

(32) 

where cz is an effective specific heat into which the 
linear release of latent heat is absorbed. Owing to the 
use of these simplified relations, exact closed-form 
solutions can be obtained as in refs. [K-17]. (How- 
ever, the solid fraction used in refs. [ 15, 161 varies 
linearly with distance instead of temperature.) Both 
planar and cylindrical geometries are considered as 
follows. The initial and boundary conditions are 

.?,=42=0 at t=O 

T, = ii‘? at r = 0 and .Y = x, 

if n=O: T, =fn 

17‘ at x=0 (33) 
if fr = 1 : lim27-&, X = Q 

v-0 d.r 

36) 

However, this point was not clearly mentioned in ref. 
[17]. Note that if ,f, = 1 the enthalpy discontinuity no 
longer exists throughout the system. In the case of 

planar geometry, analytical solutions are obtained 
in terms of a similarity variable 4 = x(~c(,I) ‘!’ as 
follows : 

(37) 

In the above, the similarity constants A, and I? arc 

obtained from 

where i,, = (i12:~.,)exp(i$--di’) and the functions 
G(s) and H(x) arc defined in equation (24). The 
above analytical solutions were derived from those in 
ref. [16] by modifying the expression for the solid 
fraction Numerical solutions are obtained for various 
values of,?, with other parameters given below 

Ste = 0.435, (‘3 = 1.2Oc,, k, = 0.92k, 

8, = 0.870, 0, = 0.946, 0, = 1.054, 8, = 1.062. 

139) 



A fully implicit method for diffusion-controlled solidification of binary alloys 1151 

Table 3. Analytical solutions for I, and 1, from equations 

(38) 

.J 1, 1.2 

0.0 0.2238 1.3550 
0.3 0.3041 1.5661 
0.6 0.3586 1.6820 
1.0 0.4129 I.7835 

The exact solutions for 1, and J., corresponding to 
the above case are listed in Table 3. Note that if 1, = 0 
the latent heat is released at the solidus front only. 
Numerical solutions are obtained by employing the 

power-law scheme and by using M, = 10, Mz = 20 
and M, = 100. From the nature of the problem, 
u’,, = 0 and w; = w; are chosen so that the correction 

equation (17) yields two linear equations for two 
unknowns u’, and u;. Converged solutions are 
obtained typically within five iterations. Numerical 
results for 1, and i, are found to agree to within 0.4% 
with the corresponding analytical solutions during the 
interval 10m4 < S,jl* < 10’. 

In the case of cylindrical geometry, exact solutions 
are found in ref. [17] where a system made of alumi- 
numsopper alloy containing 5% copper [15] is con- 
sidered to illustrate analytical results. The present 
numerical method is applied to this problem with 
M, = 50. MS = 200 and M, = 200. The parameters 
used in the computation can be found in ref. [17]. 
Computation is performed without initializing from 

the exact solutions, and, therefore, a large number of 
iterations (up to 300) were required at small times. 
However, numerical solutions converge within three 
iterationsduring the interval 10-j < 6,/l* < 10’. This 

reduction in the number of iterations is due to the 
asymptotic behavior in the solution discussed pre- 
viously. The values of 1, and A,, as defined in equation 
(37), are listed in Table 4 where the present numerical 
solutions and the exact solutions from ref. [17] are 
compared. A disagreement between two results at a 
small value of Q can be improved (to within 1%) by 
increasing the number of grid points. 

3.3. Model III 

This model assumes that the specific enthalpy and 
the thermal properties in the mushy zone (designated 

by no subscript) are weighted with respect to the local 
solid fraction [32] as 

Table 4. Analytical solutions for similarity constants 1, and 
1, from ref. [l7] and the present numerical results (shown 

inside parentheses) 

Q [W rn-~ ‘1 B,i, A: 

20 000 0.00102 (0.00121) 0.8367 (0.8366) 
30 000 0.00712 (0.00717) 0.9777 (0.9777) 
40 000 0.01879 (0.01883) 1.0724 (1.0724) 
50 000 0.03377 (0.03384) 1.1433 (1.1435) 
70000 0.06694 (0.067 16) 1.2476 (1.2482) 

h =fh,+(l-f)h, 

c = fcs + ( 1 -.fh 

k=fk,+(l-f)k, (40) 

where p = ps = pL is assumed, and h, and h, are deter- 
mined from equation (1). The local solid fraction, 
which is commonly related to the liquidus curve of 
the phase diagram [18, 191, is expressed as an explicit 
function of the temperature. In particular, a planar 

geometry is considered ; thus the heat diffusion equa- 
tion in the mushy phase is written as 

where $ = /z-h [23]. The combined flux terms 

(including the interfacial fluxes) are upwinded and a 
linear profile for tj is used in deriving discretization 
equations. The motivation for this special treatment 
is explained in ref. [24]. However, the solid and liquid 

phases are treated by employing the power-law 
scheme as in other models. Due to the nonlinearity, 
the numerical solution of equation (41) requires 
iterations. If the temperature field in the mushy zone 

is known at the previous iteration, all other quantities 
(such as f, hs and hL, etc.) are then evaluated from 
this known temperature field. Since h is the dependent 
variable in the discretization equation [24], a new 
value of h (say h”) is obtained as the current solution. 

Then, the temperature is updated using the value of 
hN as follows. Expanding h” in terms off’ and T’ and 
neglecting higher-order terms gives 

h” = h+ @)T’t (&)I’ 
01 

hN = hf {‘:+@-/I,) (;;)}T’ (42) 

from which the updated temperature is determined as 

7-N E T_t 7-’ = T_t ~____ ..h”-h__ 
c+(hs-h)(dfldT) 

(43) 

Iteration continues with the updated temperature field 
until converged solutions are obtained. 

As an illustrative example, the system considered 
in Model II is selected due to the close relationship 
between this model and Model II. Therefore, the 
initial and boundary conditions are given in equations 

(33) and (34), and a reference temperature T* is given 
in equation (36). Also, the parameters in equation 
(39) and the f-T relation in equation (31) are used; 
however, the present numerical method can accom- 
modate a general f-T relation. When the interfacial 
fluxes into and away from the mushy phase are evalu- 
ated, including the last term of equation (41), the 
correction equation (17) is still applicable to this prob- 
lem and gives two linear equations for w’, and wi. 
Computation is carried out with M, = 20. Mz = 50 
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and M, = 100. Similarity constants i, and i, are 
evaluated from the numerical solutions for the pos- 
itions of the solidus and liquidus fronts such that 

where a* is determined from equation (32), i.e. 
a* = c! 21 rather than from equation (40). As was dis- 
cussed, the transformed coordinate plays the role of 

similarity variable and thus eliminates the dependence 
of the temperature distribution on time. This is clearly 
shown in Fig. 4 where the temperature profiles for the 
case of .T, = 1 are plotted with respect to the trans- 

formed coordinate. The solid lines represent the 
numerical results, while the points are the exact solu- 

tions that are obtained from equation (37) with the 
values of 3., and iZ evaluated from equation (44). In 
Fig. 4, a single curve within each phase is in reality 
the superposition of the numerical solutions in the 
range of 10m4 < h,j/* < 10. Agreement with exact 

solutions is rather good (closed-form solutions are 
possible only in the solid and liquid phases). The 
temperature profiles in the mushy phase for different 

values of ,f, are shown in Fig. 5 where the values of 
i, and 1, are also listed. Converged solutions are 
obtained within ten iterations during the initial tran- 
sient period and thereafter within four iterations. Fig- 

ure 5 shows that, as the value of ,[, increases, the 
temperature profiles are shifted towards the solidus 
front. This can be explained from the following argu- 
ment. which is similar to that leading to equation (28). 

By manipulating equations (6) and (44), the Peclet 
number at a given control-volume surface located 
within the mushy zone can be expressed as 

'i 

‘.‘O I 
1.05 

1.00 

0.95 

0.90 

0.65 ’ I I 1 I I 
0.0 0.2 0.4 0.6 0.6 1.0 

FIG. 4. Temperature distribution in the solid, mushy and 
liquid phases for the case of ,f; = 1 : numerical solutions 

(solid lines) and exact solutions (circles). 

1.06 

1.04 

1.02 

02 
1.00 

0.96 

0.0 0.223 1.305 
0.3 0.303 1.533 

0.96 0.6 0.357 1.659 
0.409 1.771 

0.94 
0.0 0.2 0.4 0.6 0.6 1.0 

FIG. 5. Temperature distribution in the mushy phase for 
various values of ,f,. 

An examination of the above equation using the 
values of 1, and /2? from Fig. 5 shows that the Peclet 
number increases with an increase in p, Therefore, as 
the value of ,r, increases, a higher upwinding occurs 
due to an increased Peclet number. Also, since the 
direction of pseudo-convection is towards the solidus 
front, the temperature profile is shifted towards the 
solidus front. 

In refs. [18, 191, the wall temperature is set above 
the solidus temperature. Thus a single moving inter- 
face separating the mushy and liquid phases (i.e. liqui- 
dus front) is considered. Their numerical solutions arc 
based on the use of ordinary differential equations 
expressed in terms of a similarity variable. These 
approaches require the analytical solutions for the 
liquid phase and, therefore, are of a limited applic- 

ability to semi-infinite domain problems. Note that 
the present numerical method has eliminated such a 
limitation and is also applicable to finite-domain 

problems. 

4. SUMMARY 

The conservative transformed equation recently 
proposed by the authors is utilized to solve diffusion- 
controlled solidification of binary alloys. The numeri- 
cal method suggested here is suitable to treat a certain 
class of diffusion models based on the assumptions of 
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macroscopically planar interface and local thetmo- 

dynamic equilibrium. 
In the literature, analytical solutions are normally 

found for unbounded-domain problems by con- 
verting partial differential equations into ordinary 
differential equations in terms of a similarity variable. 
Analytical solutions are sometimes combined with 
numerical solutions based on conventional methods 
such as the Runge-Kutta integration. In the present 
numerical method, the partial differential form is 
retained in the transformed coordinate, which often 

plays the role of a similarity variable. As a result, an 
analogous pattern is found between the numerical 

and the analytical solutions. However, the present 
numerical method has a capability to treat finite- 

domain problems as well, and its formulation is based 
on the conservation principles and thus is consistent 
with well-established solution methods in treating 

fixed-boundary problems. Furthermore, when com- 
pared with the existing numerical methods based 

on multi-domain approaches, the present method 
employs a remarkably different solution procedure. 
As such, the temperature and position corrections, 

similar to the pressure-correction widely used in 

single-phase convection/diffusion problems, are intro- 
duced to overcome the difficulties associated with 
unknown location of phase interface and unknown 
interface temperature. The correction equations are 

derived from the conservation of the interfacial fluxes 
and are solved simultaneously to update the inter- 
mediate solutions during iterations. Therefore, the 

present numerical method is characterized by a fully- 
implicit treatment of the field equations and the inter- 
face conditions, and, consequently, the conservation 
principles are obeyed within a preselected tolerance. 

The present numerical method is tested against sev- 
eral diffusion models for which analytical solutions 
are at least partially available. In the case of no mushy- 
zone models, both the temperature and concentration 
fields are treated by employing proper renor- 
malization of the length scales to resolve steep con- 
centration gradients near the phase interface. Solu- 

tions to the mushy-zone models, in which the growth 
of the mushy zone is controlled by heat diffusion, 
are also studied. In addition, an assumption that is 
thermodynamically inconsistent but found in some 
of the previous studies is addressed and examined 
quantitatively. A novel technique developed in this 
study enables the numerical solution at each time step 
to converge within a small number of iterations. Also, 
numerical solutions agree with the available analytical 
solutions to within reasonable accuracies. The present 
numerical method can potentially treat the two- 
dimensional cases of the models considered here. 
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UNE METHODE ENTIEREMENT IMPLICITE POUR LA SOLIDIFICATION 
CONTROLEE PAR LA DIFFUSION DANS DES ALLIAGES BINAIRES 

R&sum&~Une methodc numerique developpee recemment pour des problemes de changement de phase 
d’un composant unique est Ctendue au traitement de modeles de solidification control&e par la diffusion 
pour des alliages binaires. Les modeles multi-domaine soulevent une difficult& speciale associee a la position 
inconnue de l’interface et a la temperature de transition de phase. Cette difficult& est efficacement trait&e 
ici en definissant des corrections semblables a celles utilisees dans les problemes de convection 
monophasique. Les equations et les conditions interfaciales sont trait&es de fa9on completement implicite 
a l’aide des equations de correction qui sont developpees a partir de la conservation des flux interfaciaux. 
Comme verification, plusieurs modeles de diffusion conduisant a des solutions analytiques sont consider&s. 
Les solutions numeriques s’accordent avec les solutions analytiques disponibles. L’hypothtse tres courante 
d’une chaleur latente constante est trouvee etre thermodynamiquement inconsistante dans certaines con- 
ditions et elle est clarifiee et corrigee. Une procedure d’iteration unique, suggeree dans cette etude, est 

remarquablement efficace et elle conduit a une convergence rapide. 

EIN VOLLSTANDIG IMPLIZITES VERFAHREN FUR DIE 
DIFFUSIONSKONTROLLIERTE ERSTARRUNG BINARER LEGIERUNGEN 

Zusammenfassung-Ein kiirzlich entwickeltes numerisches Verfahren fur Phasenwechselprobleme mit einer 
Komponente wird erweitert, urn vorhandene Mehrzonen-Modelle fiir die diffusionskontrollierte Erstarrung 
binarer Legierungen behandeln zu kiinnen. Die Mehrzonenmodelle rufen im Zusammenhang mit der 
unbekannten Lage der Phasengrenzfliche und der Phaseniibergangstemperatur spezielle Schwierigkeiten 
hervor. Solch eine Schwierigkeit wird hier dadurch wirksam beseitigt, da13 Korrekturen definiert werden. 
Bhnlich denen, die bei einphasigen Konvektionsproblemen gebrauchlich sind. Die Feldgleichungen und 
die Bedingungen an der Phasengrenzfliche werden durch die Temperaturgleichungen implizit behandelt. 
welche sich aus den Stromdichten an der Phasengrenze ergeben. Zusltzlich wird beim Auftreten einer 
grol3en Abweichung zwischen thermisch- und konzentrationsbedingter Stoffdiffusion eine erneute 
Normierung der Langenskalen empfohlen, urn die rlumliche Aufliisung sowohl des Temperatur- als such dcs 
Konzentrationsfeldes zu verbessern. Als Verifikation werden mehrere Diffusionsmodelle betrachtet, fiir die 
such analytische Liisungen vorliegen. Die tibereinstimmung ist gut. Es wird auRerdem herausgefunden, 
dal3 die weithin benutzte Annahme konstanter latenter Warme unter bestimmten Bedingungen thermo- 
dynamisch inkonsistent ist. Dieser Punkt wird geklart und korrigiert. Ein eindeutiges Iterationsverfahren, 
das in der vorliegenden Untersuchung vorgeschlagen wird, hat sich als bemerkenswert wirksam herausgstellt 

und fiihrt zu schneller Konvergenz. 

HEIIBHbII? METOA PAC=IETA KOHTPOJIBPYEMOI-0 flM@ebY3MEn 3ATBEPAEBAHHR 
6AHAPHbIX CI-IJIABOB 

&iHoTa~n-Henam papa60TaHHbIP WCJIeHHbIfi MeTOJJ peJlIeHEiK 3ana'I OflHOKOMnOHeHTHOl-0 +a30- 

BOrO nepexona paCnpOCTpaHKeTCK Ha HCCJIeAOBaHHe HeKOTOpbIX MHOrOLlOMeHHbIX MOWJleti LUIK KOHT- 

ponwpyehioro ne+$y3eefi npowcca 3aTBepneBaHan 6UHapHbIX CnJIaBOB. klcnonb3oBaHwe 

MHOrOnOMeHHblx MO,.,!Z,Ieii CBIlSaHO C TpyP,HOCTKMH, 06yCJlOBJIeHHbWi OTCyTCTBUeM naH"bIx 0 PaCnO- 

nomewia rpaew~pa3~enanTe~nepaType~a3onoronepexona.3To3aTpy~eHue~~K~~BH0yCTpaH- 
neTc* nocpencrBoM 0npeneneHsr nonpaBoK,amnorwnmx BcTpe=iamwiMcr B KoHBeKTHBHblx 3axasax 

onHor$a3HbIx csicTeM. YpameHnn B ycnosrin tra rpaaaue pasnena +ophtynnpyroTcr B HennHoH @opMe, 
WcxonR w3 ypaBHeH&in COxpaHeHan nOTOKOB Ha rpaHm&e. KpoMe Toro, npa 6onbmex paCXOWV2HllKX 

Mexcny 3Ha'IeHI(IIMA K03+f&lI&K!HTOB Tehmepa-rypoBonHocru II MaCCOnpOBOAIiOCTll PaCTBO~HHOrO 
BemecrBa npennonaraeTcn, STO nepeHoph45ipoBKa MacmTa6oB arre~bl nonbnuaeT np0cTpaHcTseHHoe 

pa3pemeHAe TeMnepaTypHbrX H KOHUeHTp illViOHHbIX nOJIe% &IS npOBepKH pai%MaTpEiBaloTCK HeCKO- 

nbiro Moneneii nw44ysuu, nonyCKaIonuix aHanaTw4ecKUe pemealm. llpH 3Tot4 WcneHHbte pemeHsa 

XOpOUIO COrnaCyIOTCK C HMeIOIUHMHCII aHa,',WT"'IeCKHMH. %3bKCHKeTCK H KOp~KTHpyeTCK IUHpOKO 

BcnonbsyeMoe npe~ononceaue 0 nocronrrcrIBe B~JIW~HH~ICK~~ITO~% TennoTbl,KoTopoe,KaK noKa3an0,B 

Onpe,Z,eJleHHbIX YCJIOBHRX CTaHOBHTCR HenpaBOM~HbIM C TO'IKH 3pHSifl TepMOJUiHaMEKli. &WWO~eH- 

HbIfi OpmHHaJIbHbdi ATepaLV%OHHbIii MeTOn IIBJIPeTCff BeCbMa 3@eKTHBHblM A npHBOWT K B~crpofi 


